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Summary 

A method for obtaining the numerical solution of first-kind integral equations with the Hankel-function kernel 
H(ol)(klx- t I) is described in relation to two water-wave diffraction problems. The principal feature is the 
implementation of a new technique for transforming the given equations into second-kind integral equations, 
which have continuous kernels and from which numerical approximations can readily be determined. 

1. Introduction 

We describe here a new method of solving two related wave-diffraction problems which 
was developed to provide an efficient numerical solution, particularly in the context of 
coastal engineering. The technique is an improvement (in terms of computational effort) 
on those currently employed in this area (see, for example, Gilbert and Brampton [3]) for 
the two prototype problems considered, and it is capable of extension to other problems. 

The standard integral equations for the two problems, which are given in the following 
section, are reduced to forms more suited to rapid computational techniques by an 
analytic procedure which falls into two essentially separate parts. In the first of these it is 
shown that the two integral equations, whose solutions each depend on two physical 
parameters, are solved via a single first-kind integral equation involving only one parame- 
ter. This simplification was first noticed by Williams [9] and in Section 2 we derive those 
particular relationships which form an essential part of overall procedure, by a method 
different from that used by Williams. 

The second element of the reduction, which is the main feature of the method, involves 
the conversion of the simplified first-kind equation, which has a logarithmically singular 
kernel, into a pair of second-kind integral equations with continuous kernels. This is 
achieved by means of an operator, recently devised by Porter [6], which transforms the 
Hankel-function kernel into a Cauchy singular kernel whose principal part is easily 
isolated and inverted. The mechanism used for changing the kind of the integral equation 
can be implemented without the preliminary removal of a parameter, at the expense of a 
reduction in the overall efficiency, and can be applied in more general circumstances than 
those encountered here. 

The advantages of a second-kind integral equation over one of the first kind, from the 
computational point of view, are well-known and various conversion methods have been 
developed, particularly with regard to the Hankel-function kernel (see, for example, 
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Wickham [8]). The procedure described here appears to be new, however, and is dis- 
tinguished by the fact that the kernels of the derived second-kind equations can be 
evaluated explicitly. Although the form of these kernels is rather complicated, the 
implementation of a standard numerical routine proves to be straightforward and provides 
accurate solutions very rapidly. 

It should be remarked that the second-kind equations which are derived provide a 
convenient means of obtaining approximate analytic solutions (for long or short waves) 
but this aspect is not pursued here. 

2. The reduction of the integral equations 

The diffraction of a plane wave train through a gap in an infinite straight breakwater 
requires the solution of the integral equation 

= L ( x ) ,  Ixl < 1, (2.1) 

where 

(Koo) ( z )  = ½i f  1 H g ) ( k l x  - t[)va(t) dt, 
d _  1 

H~o~)(x) denoting the Hankel function of order zero, and 

f~(x) = exp(-ikx cos a). 

Here k represents the (non-dimensionalised) assigned wave number and a ~ [0, ~r] is the 
given incident wave angle. The unique solution of (2.1) is such that 

v,~(x)- (1 - x 2 )  -~/2, I x l  --, 1, (2.2) 

this behaviour being induced by the logarithmic singularity in the kernel of K. 
The complementary problem of wave diffraction by a finite strip leads to the integro- 

differential equation 

+ k  2 (K~p,~)(x)=ik sin a f t (x ) ,  Ixl < 1, (2.3) 

whose solution must satisfy 

q~ ( + 1) = O, (2.4) 

and it is not difficult to deduce from (2.1) and (2.2) that 

, , ( x ) -  (1 - x 2 )  '/2, Ixl ---, 1. (2.5) 

In terms of the inner product 

( f '  g) ---- f11f(x)g--~v_ dx, 
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quantities of prime physical interest associated with (2.1) and (2.3), the far-field diffrac- 
tion coefficients, are given respectively by 

G(a,  O)= (v, ,  f, ,-o), F(a,  O)= ik sin 0(q~, f~-o),  (2.6) 

in which 0 ~ [0, ~r] is the observation angle. The reciprocal relation 

G(a,  O)= G(O, a) (2.7) 

follows directly from (2.1) and (2.6). Further, it transpires that we ultimately need only to 
calculate G(a, 0), for which we use the shortened notation 

G,~ = G(a,  O)= G(O, a). (2.8) 

Other symmetry properties, which can be deduced immediately from (2.1) and (2.3), are 

v , , ( x )=o , , _ , , ( - x ) ,  q ~ ( x ) =  q~,_~(-x) ,  Ix I <1 ,  (2.9) 

and these lead to 

G(a,  O) = G(~r - a, ~r - 0), r ( a ,  O) = F(~r - a, 7r - 0). (2.10) 

Interchange of the differential and integral operators, followed by an integration by 
parts and use of (2.4), establishes that 

( ~-~-~ - ik )( Kd~)(x  ) = { K(ep~ - ikep~) } (x  ). 

When this relationship is employed in (2.3) and the remaining factor in the differential 
operator there is removed by integration, we find that 

{ K(q,'~ - ik4,o)}(x) = cot(½a)(f~(x)  - c , fo (x ) ) ,  Ix I < 1, 

for a ~ (0, ~r). On referring to (2.1), (2.2) and (2.5) we deduce that 

q~;(x) - i k ~ , ( x )  = cot(½a)(v~(x) - C~Vo(X)), Ix I < 1. 

The constant c a is determined by noting that, according to (2.4), 

(ep" - i k ~ ,  f,,) = O, 

which implies that 

(v , ,  - c , ,vo ,  f ~ )  = O, 

giving 

c~ = GolG~ 

in the notation (2.8). 



66 

We now have an explicit connection between q,~(x) and v~(x), namely 

Go(eO',(x) - ikeo,(x)) = c°t(½a)(Gov,~(x) - G,,vo(X)), I x I < 1, (2.11) 

and the remaining analysis follows from this and the symmetries inherent in the governing 
integral equations which we have already noted. Thus, using (2.9) in (2.11) we have 

G o ( e / ( x ) + i k e o , ( x ) ) =  - tan(½a)(Gov~(x) -G, , -av~(x) ) ,  Ixl <1 .  (2.12) 

Eliminating v~(x) between (2.11) and (2.12) and solving the resulting differentialequation 
for ~ ( x )  in accordance with (2.4) yields 

£ 2Goeo.(x)=sinaf.(x) {G.vo(t)-G._~v,~(t)}L_.(t) at, Ixl <1, (2.13) 

which satisfies the condition ~ ( - 1 ) =  0 identically. Either (2.11) or (2.12) may now be 
used to provide v~(x) in the form 

Gov~( x ) = cos2( ½a)O~vo( x ) + sin2( ½a)O~_~v,~( x ) - ikO o sin adam(x), Ix I < 1, (2.14) 

in which g},(x) represents the function defined by (2.13). 
On the basis of these expressions it is a straightforward matter to evaluate the 

diffraction coefficients defined by (2.6) and find that 

2G0(cos a + cos O)F(a, 0) = sin a sin O(G,~_,,G,,_o - G,,Go), (2.15) 

and 

GoG( a, O) = cosE( ½a)G,~Go + sin2( ½a)G~_,,G~_o - cosecO sin aGoF( a, 0). (2.16) 

Since 

v,~(x) = Co( - x )  (2.17) 

by (2.9), we conclude from the foregoing relations that 4~(x), v,~(x), F(a, O) and G(a, O) 
are completely determined by merely solving 

( K v o ) ( x ) = f o ( x ) ,  Ixl < 1, (2.18) 

for Vo(X ) and evaluating 

G,~ = (v 0, f,~_~) (2.19) 

for a selection of values of a, where 0 ~< a ~< ~r. 
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3. The integral equations for Vo(X) 

It is convenient at this point to decompose Vo(X ) into its even and odd parts and, using 
(2.17), to set 

v 0 ( x )  = v , ( x )  + =  s(X) - ( 3 . 1 )  

where 

2v,(x)  = v0(x ) + % ( - x ) ,  2%(x)  = Vo(X ) - % ( - x ) .  

In consequence, (2.18) is replaced by the two integral equations 

So' } v , ( t ) { H ( o l ) ( k l x - t l ) + H ( o l ) ( k l x + t l ) }  d t =  - 2 i  cos(kx),  

0 ~ < x < l .  (3.2) 
f01v,(t) { n(ol)(klx - t I) -n{o l ) (k lx  + t I)} dt = 2 sin(kx),  

Our approach is to first transform each of these equations into a Cauchy singular 
equation of the first kind and then, by inverting the principal part, to deduce a pair of 
second-kind equations with regular kernels from which Vs(X ) and v,(x) may be de- 
termined numerically. The former objective is achieved by making use of the operator M 
introduced by Porter [6] and defined by 

(d )So" (Mq~)(x) =- + k 2 Jo(k(x  - t ) )¢ ( t )  dt,  x > O, 

for a function if(x) integrable on a given interval. The particular property of M which is 
significant here was derived in the earlier work and is as follows. If we denote 

h ±(x, t )=  H{ol)(klx +_t[), 

where t is regarded as fixed, then 

( Mh ±)(x)  = Tk t {  Jo(kx)H~')(kt) +_J,(kx)H(o')(kt)}/(t +_ x),  

for x =~ -T- t. Here we have used the standard notation for Bessel functions. 
Recalling that fo(x)= exp( -  ikx), it is easy to establish that 

( Mfo)(X) = - k J , (  kx) + ikJo(kx), 

and we may therefore explicitly express the effect of applying M to the equations (3.2). 
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After some rearrangement and use of the Wronskian relation for Bessel functions, we 
arrive at 

l fo 2XVs(t) 
7 - 7  

~T fo 12 wa ( t ) 
t 2 _ x  2 

dt i k J l ( kx ) - f o '  I - -  = N~(x, t )G( t  ) at, 
O ~ < x < l .  

- -  d t =  - k J o ( k x ) - f o l N . ( x ,  t ) G ( t  ) d t , f  
(3.3) 

in which the kernels 

N~( x, t )= ktH(o"( kt ) [ tJl( kx ) - XJl(kt)] - ktxH(11'( kt ) [ J°( kt ) - J°( kx )] 
t 2 _ X 2 t 2 - -  x 2 

N. (x ,  t )=ktH(oa)(k t ) [ tJ l (k t ) -  XJl(kX)] kt2H("(kt)  [ J o ( k t ) - J o ( k x ) ]  
t 2 _ x 2 t 2 _ x 2 , (3 .4)  

are regular. 
The integrals on the left of (3.3) are to be interpreted in the sense of Cauchy principal 

values, and the corresponding operators can be inverted by means of the method 
developed by Muskhelishvili [5]. We require solutions for Vs,~(x ) which are bounded at 
x = 0 (with G(0) = 0) and unbounded at x = 1, in accordance with (2.2). In fact we may at 
this stage remove the end-point singularities by introducing new functions ff,.~(x), 
continuous in [0, 1], such that 

4,s,.(x) (1 2'1/2 [ ' = - x  ) G,a~,x),O~x<~l.  (3.5) 

Having solved (3.3), regarding the right-hand sides as known, and implemented (3.5), 
the resulting integral equations may be written jointly in the form 

fo ~s,~(x)=Fs.o(x)+ ls.a(x, t)qJs,~(t)dt, O<~x<~l. (3.6) 

The kernels occurring here are 

Is(x, t) = 2i f l  u(1 --u2)1/_____ 2 Ns(u, t) 
-~-ao ( l _ t 2 ) , / 2  - ~ x - -  2- du, 

lX(__l--u2) 1/2 Na(U , t) 
l , (x ,  t) = 2~/f  0 ~ r  (1 - t2) 1/2 u-~:x7 du, 

(3.7) 

and the free terms are given by 

F~(x) = 2k fo 1 t(1 - t2) l /2j l (k t  ) -~- -~ ~ - ~  d t + G,  

F, (x)  2ki fo I x(1 - tz)l/ZJo(kt ) 
=---~- t2_  x 2 dt. 

(3.8) 
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The appearance of the constant as, indeterminate at this stage, indicates that the equation 
for +s(x) is not equivalent to the original first-kind equation for us(x). The equations 
which determine Va(X ) and +~(x) are equivalent however. 

This technique for regularising a singular integral equation is standard, but its useful- 
ness in practical terms depends on convenient forms being available for the elements of 
the new equations. In the present case, the integrals (3.7) and (3.8) can be evaluated by 
using the Fourier expansions 

oo 

Jo(kx)=JZ(½k) +2 E (-1)"J2(½k)Tz,(X), 
n = l  

oo 

J](kx)=2 E (-1)"j.(lk)j.+x(½k)T2.+](x), 
n = O  

given by Luke [4], in conjunction with the standard integral 

1 r l  Tn(t ) dt 
7 J _ ,  (1 - t2)1/2( t  - X) G_,(x), IxI <1,  

where T,(x) and U,(x) are the first- and second-kind Chebyshev polynomials, respec- 
tively. 

Before setting down the expressions which result, it is convenient to make the variable 
change 

x = cos 0, Cs,o(cos 0) = %a(O), 0 < 0 < ½~, (3.9) 

following which the final form of the second-kind equations is 

X~s,a(O ) ----- hs,a(O ) + ( Ks,aX~s,a)(O), 0 < 0 <~ ½qT. (3.10) 

The kernels of the operators 

r ~ r / 2  . 

(Ks'fl's'a)(°)-Jo ks'a(°' O)'~s'a(O) dO 

can be arranged in the following form which proves convenient for the subsequent 
computations: 

< ( o ,  o ) =  i~ cos o{ H~l)(k cos o)s,(o, o ) -  cos OHo")(k cos o)s,(o, o ) } ,  

ka(o, O)= ik cos O{ H(l)(k cos O)S2(o, 0)-cos oH(ol)(k cos O)S3(o, O)}, 
(3.n) 

where 

Sl(O,  O ) =  - 
oo 

E (-1)"[JL,(½~)-JL,(~k)]s.(o-o)so(o+o), 
n ~ 2  
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S2(o, O)= - ~ (-1)"[Jf+,(½k)+JZ(½k)][S,,(O-o)S,,+l(O+o) 
n = l  

+S,,+,(O-o)S,,(O+o)], (3.12) 

8 oo 
S3(o, 0 ) = ~  E (-1)"nj2(½k)S,,(O-°)S,,(O+°), 

n = l  

and S,,(O)= sin(nO)/sin O. The free terms in (3.10) are given by 

h,(o ) = Cs +4 ~ ( - - 1 ) " n J d ( l k )  cos(2no), 
n = 0  

h a ( o ) =  -ik Y'~ (-1)"[J2+a(½k)+J~2(½k)] cos(2.  + 1)o, 
n = l  

(3.13) 

and we have accumulated the constants arising in the equation for xIts(o) (including a s) in 
C s. This constant is determined by referring to the original equation for G(x), evaluated at 
x = 0, which in terms of the current variables requires that 

fo'~/2xt's(O)H(o')(k cos O) dO = - i .  (3.14) 

If we decompose @,(o) in the form 

~'s(O) = ~'s">(o) + cs~'Y>(o), (3.15) 

where 

~,Jl'(o) = ( h s ( O ) - c , ) +  ( /q~,~",) (o) ,  ] 
xt,}2)(o) = 1 + (Kfl, ,(2))(o) ' ] 0 ~< o ~< rr/2, (3.16) 

then, following the solution of these last two equations, C s is given explicitly by using 
(3.15) in (3.14). 

4. The numerical procedure and results 

Despite the complicated forms of the two integral equations (3.10) to which the original 
problems have been reduced, their numerical solution is straightforward. It should be 
noted that the kernels (3.11) are continuous for 0 ~ a, 0 ~< ½~r. Their first derivatives are 
also continuous in the same region except for a logarithmic singularity in 3ka/30 at 
0 = ½~, the effect of which is minimised by the fact that 'I'a(0) vanishes at this point. On 
the basis of this smoothness it is anticipated that fairly accurate solutions of (3.10) can be 
obtained by using a relatively crude quadrature scheme to approximate the integrals, and 
this proves to be the case. As a result the numerical evaluation of the kernels is necessary 
at comparatively few points. 
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The forms of the kernels given in (3.11) are not the most concise available, but they are 
the most convenient on which to base computations. The function S,(O) is calculated by 
means of the recursion formula 

S,+1(0) = S,(O) cos 0+  cos(n0), n = 1, 2 . . . . .  

with S 1 (0)= 1, and the Bessel functions can be computed to any required accuracy using 
the stable recurrence routines given in Abramowitz and Stegun [1]. Bearing in mind that 
we are only concerned with values of k which are O(1) (for which neither the short- or 
long-wavelength asymptotic solutions of the diffraction problems are appropriate and the 
numerical solution is essential), the summations in (3.12) and (3.13) converge rapidly and 
their values can accurately be found by truncation. Terms of the form cos OH(ll)(k cos O) 
are evaluated at 0 = ½or by using the appropriate asymptotic expansion of the Hankel 
function. 

The numerical routine selected to solve the integral equations is the NystriSm method 
used in conjunction with the composite Gauss-Legendre rule mG, (that is, the n-th order 
Gauss-Legendre rule applied on m equal subintervals). This procedure compares favoura- 
ble with competing methods (see Baker [2] and Riddell and Delves [7]). 

The quantities of principal interest can be calculated from the approximate solutions of 
(3.10) by first using (3.5) and (3.1) to produce Vo(X ) and v,~(x). The numerical integration 
of G~ as given by (2.19) and subsequently of the function ff~(x) defined by (2.13) is 
performed using interpolation where necessary. We can finally construct v,~(x) according 
to (2.14) and the diffraction coefficients given by (2.15) and (2.16). We note here that 

Table 1. The far-field coefficients [G(a, 0) I (upper values) and I F(a, 0) I (lower values) for k = 12~r 

0 a 

0 ~ 6  ~ 4  ~ 3  ~ 2  

0 0.99 0.98 0.99 1.08 1.67 

ir/6 0.98 1.00 1.07 1.26 2.01 
- 0.60 0.92 1.25 1.67 

~r/4 0.99 1.07 1.23 1.54 2.39 
- 0.92 1.43 1.93 2.55 

~r/3 1.08 1.26 1.54 1.95 2.80 
- 1.25 1.93 2.59 3.36 

~r/2 1.67 2.01 2.39 2.80 3.25 
- 1.67 2.55 3.36 4.18 

2 ~r/3 2.43 2.66 2.87 3.02 2.80 
- 1.47 2.21 2.84 3.36 

3~r/4 2.67 2.79 2.88 2.87 2.39 
- 1.17 1.73 2.21 2.55 

5¢r/6 2.78 2.82 2.79 2.66 2.01 
- 0.80 1.17 1.47 1.67 

¢r 2.84 2.78 2.67 2.43 1.67 
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Figure 1. Graphs of 1: Re(~(x)), 2: Im(q)~(x)), 3: Re(v~(x)), 4: Im(va(x)) for a = ~r and k = ½~r. 

F(a ,  ~r -  a) is obtained via an expression which is derived f rom (2.15) by taking the 
appropriate  limit, and which involves d G J d a ,  a quanti ty readily computed  using (2.19). 

A more efficient routine arises if (3.1) and (3.5) are explicitly used in (2.19), (2.13) and 
(2.14), for then the fact that qJs.,,(x) are even, odd functions of x implies that duplication 
in the computat ions  is avoided. 

Either way the specimen values of  the (real) diffraction coefficients I G(a ,  0)1 and 
I F(a ,  0) t shown in Table 1 are obtained. Where comparison is possible, these are found 

to be in good agreement with the results of Gilbert  and Brampton  [3]. We also include, in 
Figure 1, graphs of  q,~(x) and v~,(x) for the particular value a = ~r/4 of  the incident wave 
angle. 

Numerical  experiments have shown that two decimal places of  accuracy is achieved 
with m = n = 4 in the quadrature rule. With these values, the calculation of  the quantities 
in Table 1, and of  q,~(x) and v~(x) for eight values of  a, is completed in 2 seconds of 
computer  time on a N O R D - 5 0 0  system. This suggests that  extensions of  the method we 
have used, particularly of  the first- to second-kind integral-equation transformation,  could 
provide extremely effective routines for solving more complicated diffraction problems. 
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